PDF Quiz 9: Separations	Last Name:
RDCH 702	
Assigned: 7-Nov-18	First Name:
Due: 24-Nov-18	

1. Based on the figure below, provide the expected distribution coefficient for metal ions and nitric acid conditions shown in the table below.

Metal Ion	[HNO₃] M	K _d
		-
UO2 ²⁺	3.5	
002	5.5	
2.		
UO2 ²⁺	0.5	
Pu ⁴⁺	3.5	
Tu	5.5	
4.		
Pu ⁴⁺	1.0	
Np ⁴⁺	3.5	
<u> </u>	0.0	
Np ⁴⁺	0.5	
Am ³⁺	3.5	
	0.0	

- 2. Select the route and methods used for Pu separation in an example PUREX process
- **D** Formation of volatile actinides with selective removal of Pu
- □ Sorption of U and Pu to and ion exchange column, column rinse, followed by Pu reduction

 \square Extraction of UO₂²⁺ and Pu into 30 % TBP, rinse of organic phase with 3.5 M HNO₃, reduction of Pu to Pu³⁺ and backextraction of Pu³⁺ into 3.5 M HNO₃

□ Oxidative dissolution of fuel in molten salt. Selective reduction of Pu to the metallic state on an electrode

Digital Signature