RDCH 702	Last Name:
Quiz 1	
Assigned 10-Sep-18	
Due 17-Sep-18, 2nd due date 20-Sep-18	First Name:
Chart of the nuclides	
Use the chart of the nuclides, the readings on	the chart of the nuclides, table of the isotopes, and web

links to answer the following questions. Use the PDF form to input the answers. Use additional pages to show your work and submit separately.

1. (10 Points) Select the isotope where the metastable state is longer lived that the ground state. \Box^{34} cl

	L) ²⁰⁰ Au	
🗖 ¹⁰² Rh	□ ¹¹ C	□ ²⁶² Sg
🗖 ²⁴³ Pu	□ ²¹² Po	🗖 ²⁴² Am
🗖 ²³⁹ Pu	□ ¹⁴⁴ Ce	🗖 ⁹⁵ Zr

2. (5 Points) How is ¹⁴C naturally produced

3.	(10 Points) Which	elements have a relative	ely large number of met	astable isotopes D Nb
	🗖 Мо	🗖 Тс	🗖 Ru	🗖 Rh
	🗖 Pd	🗖 Ag	🗖 Sn	🗖 Sb
	🗖 Tm	ΠY	🗖 Lu	🗖 Hf

3.1. Are there any trends in the population of isotopes with metastable states? Consider the number of neutrons and protons and location of the isotopes on the chart of the nuclides

4. (10 Points) Provide the cumulative fission yields for the A isobars listed below for ²³³U, ²³⁵U, and ²³⁹Pu.

Α	233 U	235 U	²³⁹ Pu
116			
95			
72			
160			

5. (15 Points) Provide the ratio of ²³⁵U cumulative fission yield to ²³⁹Pu cumulative fission yield for the following A values.

90	91	92	94	96
98	100	101	103	105
135	137	139	142	144
146	147	148	149	150

5.1. What are the differences between the higher (135≤A≤150) and lower (90≤A≤105) A set?

5.2. What accounts for any differences?

6. (10 Points) Describe the cross section data presented for 130 Te.

- 6.1. What is the cross section for producing ^{131m}Te with thermal neutrons?
- 6.2. What is the cross section for producing 131 Te with thermal neutrons?
- 6.3. What is resonance integral cross section for producing ^{131m}Te with neutrons?
- 7. (10 Points) Provide the main gamma decay energy (from the Chart of the Nuclides) and the gamma decay intensity for the listed energy for the following isotopes.

Isotope	Main gamma decay energy (keV)	Gamma Intensity (%)	
⁵⁶ Ni			
⁶⁰ Co			
¹²⁷ Sb			
¹⁸³ Re			
²⁴¹ Am			
¹²⁸ Cd			

- 8. (5 Points) Where was the location of the first man-made reactor, when was it made, who was the primary investigator, and what were some of the reactor characteristics?
 - 8.1. Reactor Location _____
 - 8.2. Primary Investigator _____
 - 8.3. Reactor Characteristics

9. (5 Points) How were Es and Fm first produced and identified?

10. (10 Points) Provide the spin, parity, decay mode, energy from decay and half-life for the isotopes below

Isotope	Spin	Parity	Decay Mode	Energy from Decay (MeV)	Half-life
²⁰⁸ Pb					
¹⁰⁴ Rh					
^{99m} Tc					
^{148m} Pm					
¹⁶² Dy					
²⁵⁶ Fm					
^{195m} Hg					
^{200m} Au					
¹¹¹ In					

11. (10 Points) Provide the number of naturally occurring isotopes for the elements below. This includes long lived radioactive isotopes with a half-life greater than 5E8 years.

Element	Number of Stable Isotopes
Re	
V	
К	
La	
Sn	
Sb	
In	
н	
Pm	
Lr	
Ni	
Тс	
Eu	