RDCH 702 Quiz 2 Assigned 8 Oct 2018 1st due date: 14 October 2018 2nd due date: 18 October 2018 Name:

<u>Quiz Topics:</u> Speciation, Kinetics, Thermodynamics Use the lecture notes, chart of the nuclides, table of the isotopes, and web links to answer the following questions.

1. (30 Points) Using CHESS, answer the questions below for the following conditions.

1.1. 1E-6 M/L Pu⁴⁺ from pH 0 to pH 12

1.1.1.Primary Pu specie at 1 M acid _____

1.1.2. Primary Pu specie at neutral pH _____

1.1.3. pH where the PuOH³⁺ is equal to that of plutonium dioxide ______

1.2. 5E-3 M/L UO_2^{2+} from pH 2 to pH 12

1.2.1. Solution condition for studying the chemistry of UO₂²⁺

1.2.2. Solution condition with the highest concentration of dimer or trimer uranyl species _____

1.2.3. Primary uranyl chemical form at pH 11.5

 \Box UO₂²⁺ \Box (UO₂)₂(OH)₂²⁺ \Box Schoepite \Box UO₂OH⁺ \Box UO₂(OH)₂ \Box UO₂(OH)₃⁻

1.3. 1E-6 M/L Am³⁺ at pH 2 with total SO₄²⁺ from 0.01 mmol/L to 10 mmol/L.

1.3.1. Primary Am specie at 4E-3 M free SO₄²⁻

1.3.2. Free $SO_4^{2^-}$ concentration where free trivalent Am concentration is equal to $AmSO_4^+$

 $\Box \operatorname{Am}^{3+}$ $\Box \operatorname{AmOH}^{2+}$ $\Box \operatorname{Am(OH)}_{2^+}$ $\Box \operatorname{Am(OH)}_{3aq}$ $\Box \operatorname{AmSO}_4^+$ $\Box \operatorname{Am(SO}_4)_2^-$

^{1.3.3.} Identify the americium species that have concentrations greater than 5E-8 M at 5 mM free $SO_4^{2^2}$.

2. (50 Points) Consider the complexation of Pu^{4+} with a monoprotic ligand (LH). The reaction is:

$Pu^{4+}+L^{-} \leftrightarrow PuL^{3+}$

The only Pu species in solution are Pu⁴⁺ and PuL³⁺. The total Pu concentration in the solution is 1E-5 M. You determine the free ligand and free Pu concentration as a function of temperature. The ligand species are free ligand and the Pu-L complex. The total ligand concentration is [L]_t. The data are below.

ТК	[PuL] M	[L] _t M	[Pu] _t M	[L] _f M	[Pu] _f M	
298	1.99E-05	5.00E-05	2.00E-05	3.01E-05	5.44E-08	
298	2.98E-05	4.00E-05	3.00E-05	1.02E-05	2.38E-07	
298	2.19E-05	2.50E-05	2.25E-05	3.08E-06	5.82E-07	
310	8.92E-06	1.00E-05	1.00E-05	1.08E-06	1.08E-06	
325	8.61E-06	1.00E-05	1.00E-05	1.39E-06	1.39E-06	
340	8.26E-06	1.00E-05	1.00E-05	1.74E-06	1.74E-06	
355	7.88E-06	1.00E-05	1.00E-05	2.12E-06	2.12E-06	
370	7.46E-06	1.00E-05	1.00E-05	2.54E-06	2.54E-06	

Concentration of species as a function of temperature (K)

Please provide the following. Ignore activities for this question. Energy should be in J. Provide units for Δ G, Δ H, and Δ S. The subscript on Δ G is the temperature in K.

2.1. ΔG₂₉₈ _____

2.2. The equilibrium constant at 298 K

2.3. The equilibrium constant at 340 K

2.4. ΔG₃₂₅ _____

2.5. ΔH over the experimental range _____

2.6. ΔS over the experimental range _____

2.7. Using the complexation constant calculate the speciation of Pu at 330 K for 100 mM ligand and

50 mM Pu.

Free Pu _____ mM

PuL³⁺ _____ mM

3. (10 Points) Select the equation below to describe the speciation of uranyl, uranyl monohydroxide, uranyl dihydroxide, uranyl trihydroxide and diuranyl monohydroxide to find the total uranium concentration. This equation should show the total uranyl concentration as a function of free uranyl, hydroxide, and the complexation constants. The complexation constant nomenclature is β_{xy} , where x is the number of $UO_2^{2^+}$ and y is the number of hydroxides, i.e., β_{12} is the complexation constant for uranyl dihydroxide.

$$[U]_{tot} = [UO_2^{2^+}](1 + \beta_{11}[OH^-] + \beta_{12}[OH^-]^2 + \beta_{13}[OH^-]^3 + 2\beta_{21}[UO_2^{2^+}][OH^-]^2)$$

$$[U]_{tot} = [UO_2^{2^+}](1 + \beta_{11}[OH^-] + \beta_{12}[OH^-]^2 + \beta_{13}[OH^-]^3 + 2\beta_{21}[UO_2^{2^+}][OH^-])$$

$$[U]_{tot} = (1 + \beta_{11}[OH^-] + \beta_{12}[OH^-]^2 + \beta_{13}[OH^-]^3 + 2\beta_{21}[UO_2^{2^+}][OH^-])$$

$$[U]_{tot} = [UO_2^{2^+}](\beta_{11}[OH^-] + \beta_{12}[OH^-]^2 + \beta_{13}[OH^-]^3 + 2\beta_{21}[UO_2^{2^+}][OH^-])$$

$$[U]_{tot} = [UO_2^{2^+}](1 + \beta_{11}[OH^-] + \beta_{12}[OH^-]^2 + \beta_{13}[OH^-]^3 + 2\beta_{21}[UO_2^{2^+}]^2[OH^-])$$

$$[U]_{tot} = [UO_2^{2^+}](1 + \beta_{11}[OH^-] + \beta_{12}[OH^-]^2 + \beta_{13}[OH^-]^3 + \beta_{21}[UO_2^{2^+}]^2[OH^-])$$

- 4. (10 Points) Provide the solubility constants, as log K_{sp}, for the following using the table below
 - 4.1. Pentavalent Np hydroxide: ______
 - 4.2. Crystalline plutonium dioxide: _____

4.3. Amorphous trivalent americium hydroxide: ______

- 4.4. Hexavalent uranyl hydroxide: _____
- 4.5. Hexavalent plutonyl hydroxide: _____
- 4.6. If you have an excess of amorphous Pu(OH)₃ in solution, what is the concentration of free Pu³⁺ at the following pHs
 - 4.6.1. pH 2.5 _____ mol/L

4.6.2. pH 7.0 _____ mol/L

4.6.3. pH 10.0 _____ mol/L

Table 1 Solubility products log K°_{sp} of actinide oxides/hydroxides at 25 °C (from the NEA-TDB reviews [1–4] and values for An(OH)₄(am) from ref. [9], except otherwise stated).

	Th	U	Np	Pu	Am
AnO ₂ OH(am)			-8.7 ± 0.2	-9.0 ± 0.5	-8.7 ± 0.5
$\begin{array}{l} AnO_2(OH)_2(s)\\ AnO_3 2H_2O(cr) \end{array}$		-22.8 ± 0.4^{a} $-23.2 \pm 0.4^{*}$	-22.5 ± 0.4	-22.5 ± 1.0	
$An(OH)_3(am)$ $An(OH)_3(cr)$				-26.2 ± 1.5	-25.1 ± 0.8 -26.4 ± 0.6
$An(OH)_4(am)$ $AnO_2(cr)$	-47.0 ± 0.8 -53.2 ± 0.4^{b}	-54.5 ± 1.0	-56.7 ± 0.5	-58.5 ± 0.7	
2 1	$-54.2 \pm 1.3^{*c}$	$-60.9 \pm 0.4*$	$-63.7 \pm 1.8^{*c}$	$-64.0 \pm 0.5*$	$-65.4 \pm 1.7*$

*Calculated from thermochemical data.

^aMean value from solubility studies [26-31] discussed in ref. [4].

^bFrom solubility data for microcrystalline thorium dioxide [50].

^cFrom Rai et al. [18]. A noticeable deviation is observed for the NEA-TDB value of $\log K^{\circ}_{sp}[NpO_2(cr)] = -65.8 \pm 1.1$ calculated with $S^{\circ}_{m}[Np^{4+}(aq)] = -(426 \pm 12) \text{ JK}^{-1}\text{mol}^{-1}$ [3], which differs from $S^{\circ}_{m}[Np^{4+}(aq)] = -(389 \pm 21) \text{ JK}^{-1}\text{mol}^{-1}$ [19] used by Rai et al. [18].

http://wipp.energy.gov/library/cra/2009_cra/references/Others/Fanghanel_Neck_2002_Aquatic_C hemistry_and_Solubility_Phenomena_of_An_Oxides_Hydroxides.pdf