RDCH 702	Last Name:
Quiz 5	
Assigned 5 December 18	First Name:
1 st Due 13 December 18	
2 nd Due 15 December 18	
Quiz Topics	
Lecture 9 Separations	
Lecture 10 In reactor chemistry	
Lecture 11 Application of Nuclear Material Lec	ture
12 Nuclear Forensics	
Use the lecture notes, chart of the nuclides, tak questions.	ole of the isotopes, and web links to answer the following
1. (20 Points) The separation of Pu from U in	PUREX is achieved by reduction.
1.1. What is the reduced Pu metal ion that	is backextracted from the organic phase to the aqueous

phase? _____

1.2. Select the reductants that have been used in the PUREX process.

	H ₂	□ [Fe(CN) ₆] ⁴⁻	\square NH ₃ OH ⁺ NO ₃ ⁻	🗖 Na	□ U ⁴⁺	$\Box Fe(H_2NO_3S)_2$		
		I.3. What are suitable nitric acid concentrations for the initial extraction of U and Pu into the organic phase?						
	🗖 1.0 M	D 2.0 M	□ 3.0 M □	4.0 M	5 .0 M	6.0 M 🗖 7.0 M		
	1.4. What is the organic ligand in the PUREX process?							
	1.5. What	is the oxidation s	tate of the initially e	extracted urani	ium in the PUREX	process?		
2.	2. (30 Points) Where is one likely to find a higher Pu concentration in used nuclear fuel?							
	2.1. What is reason for the higher Pu concentration in the used nuclear fuel?							
	2.2. Identify the fission products which have distributions in nuclear influenced by thermal processes?							
	🗖 Mo	🗖 Cs	🗖 Xe	🗖 Sr	🗖 Kr	🗖 Zr		

2.3. Swelling and creep are physical changes in materials that can be induced by radiation. Identify swelling and creep from the figure below?

2.4. Perovskite phases (ABO₃) can form in nuclear fuel. What is reason this phase can form in fuel?
High noble gas fission product formation Fuel-cladding chemical interactions
Concentration of fission elements Sr, Zr, and lanthanides exceed UO₂ solubility limit
Role of coolant in fuel chemistry Formation of fission element solids-solutions with UO₂

3. (20 Points) Consider the following question on isotopes

- 3.1. What is the role of ²⁴¹Am in smoke detectors?
- 3.2. The isotope ²²³Ra is used in the radiopharmaceutical Xofigo.

3.2.1. Is this a diagnostic or therapeutic radiopharmaceutical?

3.2.2. How is the isotope ²²³Ra produced for this application?

 \Box ²²³Fr(p,n)²²³Ra \Box ²³²Th(p,¹⁰Li)²²³Ra \Box ²²⁶Ra(n, γ)²²⁷Ra, followed by decay to form ²²³Ra

3.3. The isotope ²³⁸Pu is used as a power source for space exploration.

3.3.1. Identify methods used to produce ²³⁸Pu for this application?

 \square ²³⁷Np(n, γ)²³⁸Np, followed by ²³⁸Np beta decay \square Alpha decay of ²⁴²Cm ²³⁹Pu(n,2n)²³⁸Pu

3.4. A 100 g sample of PuO₂, at 83.5 % ²³⁸Pu, has what power? ______ W

4. (10 points) One has a mixture of metal ions as chloride salts from a pyroprocessing separation route. The metal chlorides can be separated by volatility if a species vapor pressure above 1.0 Bar can be achieved. Select those species that will be separated from the salt at 550 °C using the figure below.

5. (10 Points) A sample of interdicted Pu is evaluated. The resulting data is below.

Isotope	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu
Activity (Bq)	978	7.16E4	2.62E4
Mass (g)		3.12E-5	3.12E-6

- 5.1. What was used to produce the Pu?
- 5.2. The interdicted Pu sample is an alloy. What alloying element would be a signature for device material?

Digital Signature